US009215196B2

a2 United States Patent

Singh et al.

US 9,215,196 B2
*Dec. 15, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)
(65)

(63)

(1)

(52)

(58)

SCHEMA-BASED DYNAMIC PARSE/BUILD
ENGINE FOR PARSING MULTI-FORMAT

MESSAGES

Applicant: Visa U.S.A. Inc., San Francisco, CA
(US)

Inventors: Thakur L. Singh, Fremont, CA (US);

Sara K. Garrison, Orinda, CA (US);
Mark Carlson, Half Moon Bay, CA
(US); Kamlakar Singh, Foster City, CA
(US); Shajen Devassey, Foster City, CA
(US)

Visa U.S.A., Inc., San Francisco, CA
(US)

Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 115 days.

This patent is subject to a terminal dis-
claimer.

14/017,214
Sep. 3, 2013

Prior Publication Data

US 2014/0025762 Al Jan. 23, 2014

Assignee:

Notice:

Appl. No.:
Filed:

Related U.S. Application Data

Continuation of application No. 12/707,634, filed on
Feb. 17, 2010, now Pat. No. 8,555,262, which is a
continuation of application No. 11/172,397, filed on
Jun. 29, 2005, now Pat. No. 7,694,287.

Int. Cl.
GO6F 9/44 (2006.01)
GO6F 15/16 (2006.01)
(Continued)
U.S. CL
CPCcccee. HO4L 51/046 (2013.01); GO6Q 20/40

(2013.01); GO6Q 30/06 (2013.01); HO4L 69/22
(2013.01); HO4L 69/03 (2013.01)

Field of Classification Search
CPC HO4L 67/16; HO4L 67/02; HO04L 67/20;

1011
Schema
name

1006

HO4L 67/327, HO4L 69/329; HO4L 51/046;
GOG6F 9/465
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,341,477 A
5,459,837 A

8/1994 Pitkin et al.
10/1995 Caccavale

(Continued)

FOREIGN PATENT DOCUMENTS

JP
JP

09-311800
2003323443

12/1997
11/2003

(Continued)
OTHER PUBLICATIONS

Caballero et al., Polyglot: automatic extraction of protocol message
format using dynamic binary analysis, Oct. 2007, 13 pages.*
(Continued)

Primary Examiner — Thuy Dao
(74) Attorney, Agent, or Firm — Kilpatrick Townsend &
Stockton LLP

(57) ABSTRACT

A parse/build engine that can handle multi-format financial
messages. The engine converts the different format messages
into a common format, and the common format message is
then processed by the business service application. A parser
examines the message and determines an appropriate schema
for the particular format of message received. The schema is
a data structure in a schema registry that includes a grammar
structure for the received format as well as pointers to han-
dlers for converting the different fields of the message into the
internal message format using the grammar structure (the
“grammar” can include field sequence, field type, length,
character encoding, optional and required fields, etc.). The
handlers are individually compiled. As formats change, new
formats or changes to old formats can be dynamically added
to the parse/build engine by loading new schema and han-
dlers.

10 Claims, 18 Drawing Sheets

1000
Ve

Schema 1014
name

1018

1018 1020 1012
/ / N
Farser IMF Buider INUNRRNAVARIINR
""" IComponent omponent [Output message
Stream in wire format

in wire format

Registery l
~—-1022

Handler Table

name handlercbiect
Handler1
pamez2| Handler2

Schema Table

pame _schemaobject
MessageDefl
namez2] MessageDef2

-
)]
1024
1026
h

schema
definition file

L
Tanderd 1028 4008
S | e mmmmn) | e p—
Loader nameN|_Hande
.
T J

1030 1004

US 9,215,196 B2
Page 2

(51) Int.CL
HO4L 12/58
G06Q 20/40
G06Q 30/06
HO4L 29/06

(56)

(2006.01)
(2012.01)
(2012.01)
(2006.01)

References Cited

U.S. PATENT DOCUMENTS

5,521,910
5,754,543
5,805,798
5,974,460
6,006,264
6,016,307
6,039,245
6,091,724
6,134,598
6,144,641
6,302,326 Bl
6,317,438 Bl
6,389,479 Bl
6,430,184 Bl
6,456,594 Bl
6,460,120 Bl
6,473,404 Bl
6,487,286 Bl
6,535,488 Bl
6,732,175 Bl
6,754,188 Bl
6,788,688 B2
6,802,067 Bl
6,839,700 B2
6,886,166 B2
7,047,285 B2
7,058,691 Bl
7,188,336 B2
7,412,667 B2*
7,467,149 B2
7,493,594 B2
7,631,314 B2 *
7,673,282 B2
7,694,287 B2
7,739,696
7,805,713 B2
8,661,452 B2*
2002/0083210 Al
2002/0091844 Al
2002/0116530 Al
2002/0141449 Al
2003/0055768 Al
2003/0093479 Al
2003/0153338 Al
2003/0158951 Al
2003/0163585 Al
2003/0169749 Al
2003/0187996 Al
2003/0210694 Al
2003/0221000 Al
2003/0223408 Al

bt g g S

*

5/1996
5/1998
9/1998
10/1999
12/1999
1/2000
3/2000
7/2000
10/2000
11/2000
10/2001
11/2001
5/2002
8/2002
9/2002
10/2002
10/2002
11/2002
3/2003
5/2004
6/2004
9/2004
10/2004
1/2005
4/2005
5/2006
6/2006
3/2007
8/2008
12/2008
2/2009
12/2009
3/2010
4/2010
6/2010
9/2010
2/2014
6/2002
7/2002
8/2002
10/2002
3/2003
5/2003
8/2003
8/2003
8/2003
9/2003
10/2003
11/2003
11/2003
12/2003

Matthews
Seid
Kearns et al.

Maddalozzo, Ir. et al.

Colby et al.
Kaplan et al.
Symonds et al.
Chandra et al.
Raman
Kaplan et al.
Symonds et al.
Trebes, Ir.
Boucher et al.
Robins et al.
Kaplan et al.
Bass et al.
Kaplan et al.
Reaves et al.
Mahe

Abjanic
Garahi et al.
Trebes, Ir.
Camp et al.
Doyle et al.
Harrison et al.
Burgess

Yu et al.
Humphries
Chrysanthakopoulos

Gaurav et al.

Shenfield et al.

Josephetal.

Amaru et al.
Singh et al.

Wolfeetal.

Patel

Gandini et al.
Harrison et al.
Craft et al.
Burgess
Johnson
Anaya et al.
Mellen-Garnett et al.
Herz et al.

Primak et al.
Elderon et al.

Huang et al.

Cardina et al.
Jayaraman et al.
Cherkasova et al.
Chen et al.

... 715/853

............. /1

..... 719/313

..... 719/328
..... 719/313

2004/0039693 Al
2004/0153511 Al
2004/0172254 Al

2/2004
8/2004
9/2004

Nauman et al.
Maynard et al.
Sharma et al.

2004/0254922 Al 12/2004 Vincent, III
2004/0268296 Al 12/2004 Kayam et al.
2005/0050203 Al 3/2005 Chattopadhyay et al.
2005/0050549 Al 3/2005 Joseph et al.
2005/0080850 Al 4/2005 Salesky et al.
2005/0138002 Al 6/2005 Giacobbe et al.
2005/0138632 Al 6/2005 Groetzner et al.
2005/0193078 Al 9/2005 Jordan, Jr.
2005/0273772 Al 12/2005 Matsakis et al.
2005/0278270 Al 12/2005 Carretal.
2006/0013367 Al 1/2006 Sawyer et al.
2006/0080120 Al 4/2006 Tcherevik
2006/0117307 Al 6/2006 Averbuch et al.
2006/0155722 Al 7/2006 Sengupta
2006/0167818 Al 7/2006 Wentker et al.
2006/0206864 Al 9/2006 Shenfield et al.
2006/0242085 Al 10/2006 Jones et al.
2006/0259912 Al* 11/2006 Weinrichetal. 719/315
2007/0067760 Al 3/2007 Andrew et al.
2007/0276765 Al 11/2007 Hazel et al.
2008/0147565 Al 6/2008 Huang et al.

FOREIGN PATENT DOCUMENTS

JP 2004303205 10/2004

RU 2222046 1/2004

RU 2249848 4/2005

WO 2004/036855 4/2004

WO 2005/043413 5/2005
OTHER PUBLICATIONS

Korhonen et al., Visualization of EDI messages: facing the problems
in the use of XML, Sep. 2003, 8 pages.

P. Resnick, Internet Message Format, Apr. 2001, 45 pages.

“Design and implementation of the parallel multimedia file system
based on message distribution”, Park et al., Oct. 2000, pp. 422-425.
Online retrieved at <http://delivery.acm.org/10.1145/380000/
376325/p422-park.pdf>.

“Performance analysis framework for large software-intensive sys-
tems with a message passing paradigm”, C. D. Rosso, Mar. 2005, pp.
885-889. Online retrieved at <http://delivery.acm.org/10.1145/
1070000/1066878/p885-del.sub.--rosso.--pdf>.

“Virtual machines for message based, real-time and interactive simu-
lation”, Kim et al., Dec. 2000, pp. 1529-1532. Online retrieved at
<http://delivery.acm.org/10.1145/520000/510603/p1529-kim.pdf>.
Search/Examination Report dated Mar. 3, 2011 from Russian Patent
Application No. 2008103282, 11 pages.

Supplementary European Search Report of EP Patent Application
No. 06774431.8, mailed Dec. 16, 2011, 5 pages total.

Non-final rejection dated Jul. 27, 2012 from Korean Patent Applica-
tion No. 10-2008-7002321 together with English language transla-
tion, 10 pages.

English Translation of Office Action mailed Sep. 26, 2012 in Japa-
nese Patent Application No. 2008-519670, 3 pages.

* cited by examiner

U.S. Patent

102

102

102

102

\

Clients

\

Dec. 15, 2015 Sheet 1 of 18
106-1
\ 104 /
\ GATEWAY rad
. 106-2
/ - \
——

Fig. 1

US 9,215,196 B2

100

;

Transaction
processors

108-1
L/

108-2

108-3

US 9,215,196 B2

Sheet 2 of 18

Dec. 15, 2015

U.S. Patent

-+
abessapy

Z b4
suoneoyoads
Mmo|4
0ce
Joyuopy
uopew.oy| ¢ Jopeo
om\m(aueuiq ucnenbyuon
sabueyo u
onesnByuon
uOljeLIojU| S9Ny 3NpPoN
X51U0D ~— uonessiuiwpy
vee - (275 <>,

! / \ 812
-4
iapng Jassed
10109198

Joyoiedsiqg weang || Jgpuey 1abeuepy weans
abessapy < ofessopy |@—| Mol ‘ wwwmmm < Aunoag “—| sbessow

pUNOAIND | g— flaepy punoquy
v_,mv vav o_‘mv momv momv vomv

vol

JOJBUIPIO0)

/

oLc

slajpuey
jsanbay

sysenbay 414

sysanbay
dLiH

TNX

)

4114

Osl

U.S. Patent Dec. 15, 2015 Sheet 3 of 18 US 9,215,196 B2

300

v

302 — 4 Receive transaction from a client for a transaction service

'

Determine application level information from the
transaction

l

306 — Determine the current state of the transport environment

l

Apply rules to application level content and/or current
308 — 4 state of the transport environment to determine service
for transaction

l

Apply rules to determine transaction processor and
network 106 to switch the transaction

:

Perform any business services on transaction at the
application level

:

Switch transaction to selected transaction processor
through network

304 —

310 —

312 —

314 —

Fig. 3

U.S. Patent Dec. 15, 2015 Sheet 4 of 18 US 9,215,196 B2

/ 400
402 Receive service creation request
404 — Receive rules for the service
406 — Dynamically load into rules database
Fig. 4
/ 500
502 — Receive request to subscribe to the service

!

504 — Receive specification for criteria for using the service

'

506 — Generate rules for routing requests for the service
508 — Dynamically load rules into rules database
510 — Generate flow definitions for the service

v

Dynamically load flow definitions

512 —

Fig. 5

U.S. Patent Dec. 15, 2015 Sheet 5 of 18 US 9,215,196 B2

'/—550

102-1 104-1 106 104-2 102-2

|
;
)
T
¥

102-3 104-3 104-4 102-4

|
|
|
T
L

102-5 104-5 104-6 102-7

|

\

/
T
Lr

Fig. 6

US 9,215,196 B2

Sheet 6 of 18

Dec. 15, 2015

U.S. Patent

VARIE

- 20 Jeluad eleq
9-80 _\/h.o J0SS800id
6-80 _/mo 161Ue] eleq EN@
.O J08S800.d

Jslusd eleq usi|D

A

Z0 J8jua) ejeq
‘g J0SS820.d

501 Aemaien)

]

L0 J81U8) ele(]

€-801 ‘g J0SS900id

.

c0l

20 J9jus) eje(o

¢80l .
V J0SS820.d

1

10 Jejus) ejed

1-801 .
v 10SS820.1d

7

US 9,215,196 B2

Sheet 7 of 18

Dec. 15, 2015

U.S. Patent

20 LBjus) ele(
‘) 10SS900.d

L0 Jojusn ejeq
‘) 10SS800Id

Z0 Jejuan eleq
‘g Jossao0.d

L0 Jajusn ejeq
‘g J0SS800.d

Z0 Jauan eleq
‘W 10S88001d

L0 Je1uan eleq
‘v 10SS8001d

\

801

}

8 Old

Jusl|D Jauley|

col

US 9,215,196 B2

Sheet 8 of 18

Dec. 15, 2015

U.S. Patent

6 9Old SYJONSD

oom\@\%\

Z0 1suan eieqg

.

808

¢08

801

008 \

‘ 10$89201d \mn_._.._.I suegq Jalinboy
L0 J8jua] eleqg (s) 1504
‘1) 10SS820.] Aemared) [—>1| uayn
.
20 Jsen eleQ]
‘g J0Ss8001d / v0l
708
10 Jeua)n eleqg
‘g 108s80014
(" jueg lenssj
< || (s)isoH
70 J8juan ereq EMOIED | =10
‘v 10SS820.d 1-018
LO J8lus) eleq - |
V 10SS900.d / v0l

c0l

c0l

US 9,215,196 B2

Sheet 9 of 18

Dec. 15, 2015

U.S. Patent

Z0 J8us) ejeq
‘) J0SS8004d

)

L0 Jejuen eleq

‘) J0SS8001d

)

20 18)us) ejed
‘g 108S800.d

AT

L0 J8lusd eleq

‘g J0SS800.d

=

Z0 J8us) ejeq
‘v 10Ss8001d

M o)

L0 Jejuan ejeq
‘v J0sseo0ld

(‘

N4

801

901

0l Ol

yuegq Jaiinboy

aouelddy

)

abp3

y o

JOXIRIEE

wsio

yueg Jenssj

aouelddy |,

ebp3 |

A 4

(s) 1soH
uslo

¢06

col

US 9,215,196 B2

Sheet 10 of 18

Dec. 15, 2015

U.S. Patent

001

\

L1 Old

0c01

\

9201

(,)
\\ N /- -
(NIsqabesssiy [Nsweu)| [(NJsjpueH | NBweu) 1opeo
ﬁ —..........v h. _..........v m&mp_om
8001 8z01 (cjeqebesse [goweu)| [(glejpueq [eauleu)
/ TN- (zieqebessaly | zeweu)| |(ziojpueH | zeweu)
(Lisqebessspy | Laweuw)| |(LJ8jpuey | |sweu)
Pa[oeweRUDS aWed | |slqoJopuey sweu
a|qe| ewayog a|qe] Js|pueH
ﬁ 2oL~ > -\ o
9 Aloisibay
JEULIO) &41M Ul Weas
abessow AN fee}---- JusuodwoD| ¢
AR 1epiing
\ —7
¢l0l 0201
auweu QL0lL aweu
¥i01 Belwisyos ewsyos
LLOL

ooov\

3l uohiuysp
BWBSYOS

1B} 81im Ul
weang abessajy INAdU| | g—

ARHHAN R0 N

odor 900}

US 9,215,196 B2

Sheet 11 of 18

Dec. 15, 2015

U.S. Patent

0l

¢l 9Ol

abessaw e Buissasoud uoneolddy

001

auibug pjing/esJed

usuodwon
Jesled

JeULLIO) 8JIM Ul LIRSS
abessaw IndiNO

S80IAISG SSauisng

____ﬁ____________ﬂ__________________ (q\

Z10l 0c0lL

wsuodwon
Jesled

7N

<o

olol

1eWIO) 84Im Ul
weang abesssp Induj

/

0L0L

oo:.\

U.S. Patent Dec. 15, 2015 Sheet 12 of 18 US 9,215,196 B2

C — [1)
Qis:m 2){_Field3) @ ,1918
GNEERENEED!

h 4 y
(Field 1.1) (Field 1.2) (Field 1.N)

Compuosite Field

_ IMF

Fig. 13A

Schema

MessageDef{ 1000, iSO, 154}

FieldDef {1.0.0, HOR , REQUIRED , FIXED:BINARY(22), RAW, CUSTOM, ISOHEADER, 14}
FieldDef {1.1.0, HDR_LEN, REQUIRED, FIXED:BINARY(1), N, NOTCUSTOM, NULL, 0}
FieldDef {1.2.0, HDR_FORMAT, REQUIRED , FIXEDBINARY(1), BITSTRING,NOTCUSTOM, NULL, 0}
FieldDef {1.3.0, HDR_TEXT, REQUIRED, FIXED:BINARY(1), N, NOTCUSTOM, NULL, 0}
FieldDef {1.4.0, HDR_MSG_LEN, REQUIRED, FIXED:BINARY(2), N, NOTCUSTOM, NULL , 0}
FieldDef {1.13.0, HOR_BMA, OPTIONAL, FIXED:BINARY(2), BITSTRING, NOTCUSTOM, NULL, 0}
FieldDef {1.14.0, HDR_REJECT_GROUP, OPTIONAL, FIXED:PACK_BCD(2}, N, NOTCUSTOM, NULL, 0}
...... | SN N) S — | S) NS S N — et
------ 1202 1204 1206 1208 1210 1212 1214 1216

Fig. 138

U.S. Patent Dec. 15, 2015 Sheet 13 of 18 US 9,215,196 B2

Message 1010

Fig. 14B

U.S. Patent Dec. 15, 2015 Sheet 14 of 18 US 9,215,196 B2

IMF object
1018

1.0.0 2.0.0 4.0.0

s N rd

1.1.0 220 4.1.0

rd

1.1.1

Fig. 14C

U.S. Patent Dec. 15, 2015 Sheet 15 of 18 US 9,215,196 B2

1400

Receive initialization request from an application
with location of schema definition files

l

1404 Validate schema in the schema definition files

.

06 Load the schemas in the schema definition files
1406 —_— into the registry

l

Load any handlers specified in the schemas into

1402 _—

1408 — the registry
1400 — Bind handlers to the schemas

Fig. 15

U.S. Patent Dec. 15, 2015 Sheet 16 of 18 US 9,215,196 B2

1500

Receive indication that a schema has been
1502 | updated or a new schema has been added and a
location of the schema

,

1504 __— Validate the schema in the schema definition files

'

5 Load the changed or new field definition object
1506 —— from the schema definition file into the registry

:

Load any changed or new handlers specified in
the changed or new field definition

:

15610 Bind the handiers to the field definition object

1508 _—

Fig. 16

U.S. Patent Dec. 15, 2015 Sheet 17 of 18 US 9,215,196 B2

1600

1602 Determine schema for the message

l

Determine handlers for the field definition objects
for the schema

'

Attach handiers for each field to the fields of the

1606 — — message
1608 _— Translate fields of the message

,

Store translated fields in corresponding hierarchy
of IMF object

1610 —

Fig. 17

U.S. Patent Dec. 15, 2015 Sheet 18 of 18 US 9,215,196 B2

1700

1702_— Determine schema name and the IMF object

l

Determine field definition object for
1704 —— the schema name

'

Determine any handlers for
1706 e — the field definition object

1708 — For each field in the IMF object, load value

'

Translate values for each field using field
definitions

l

Output translated values for each field in an output
message

1712« —

Fig. 18

US 9,215,196 B2

1
SCHEMA-BASED DYNAMIC PARSE/BUILD
ENGINE FOR PARSING MULTI-FORMAT
MESSAGES

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 12/707,634, filed on Feb. 17, 2010, which is a continua-
tion of U.S. patent application Ser. No. 11/172,397, now U.S.
Pat. No. 7,694,287, filed on Jun. 29, 2005, all of which are
herein incorporated by reference in their entirety for all pur-
poses. This application is related to U.S. patent application
Ser. No. 11/171,516, now U.S. Pat. No. 7,774,402, filed on
Jun. 29, 2005, entitled “ADAPTIVE FRONT END GATE-
WAY FOR SWITCHING TRANSACTIONS AND DATA
ON UNRELIABLE NETWORKS USING CONTEXT-
BASED RULES;,”which is herein incorporated by reference
in its entirety for all purposes.

BACKGROUND OF THE INVENTION

The present invention generally relates to parse/build
engines and more specifically to a high performance and yet
very flexible parse/build engine capable of translating multi-
format message streams into an internal message format for
processing and translating the internal message format back
to the multi-format message streams where formats that can
be translated may be dynamically added to the parse/build
engine.

Applications need to communicate with other heteroge-
neous systems when performing tasks. These heterogeneous
systems may use data in a format that is different from the
internal format of the host application. In order to be able to
process information received in the different data format, the
host-application may have to parse the external data format to
its own internal data format. The host application can then
process the parsed information in the internal data format.
After processing, the processed information is then built into
the external data format. Accordingly, the software applica-
tion can then effectively communicate with external hetero-
geneous systems that process data in a different data format
than the internal data format used by the software application.

Conventionally, parse/build engines are used for the parse
and build steps described above. The engines are generally
one of two types, interpreter-based parse/build engines and
compiled parse/build engines.

Interpreter-based parse/build engines can handle multiple
data formats. The interpreter-based parse/build engines
include a large grammar dictionary that is used to interpret a
certain set of messages. Accordingly, multiple data formats
can be handled, but at the cost of performance because using
the grammar dictionary is often very complex and translating
messages using it degrades performance. Another drawback
with the interpreter-based parse/build engines is they can only
interpret the certain set of messages included in the grammar
dictionary. If additional definitions in the grammar dictionary
need to be added, the engine typically has to be recompiled in
order to use the new definitions for the grammar dictionary.

Compiled parse/build engines are customized for high per-
formance for a fixed set of data formats. But compiled parse/
build engines cannot support new data formats dynamically.
They require code changes to incorporate the new data for-
mats that may be necessary to support new business require-
ments. The code changes must then be recompiled. Thus,
compiled parse/build engines are not a good fit for systems

10

15

20

25

30

35

40

45

50

55

60

65

2

that need to handle new message types dynamically and can-
not be brought down for re-compiling.

BRIEF SUMMARY OF THE INVENTION

The present invention provides a parse/build engine that
can handle multi-format messages. The engine converts the
messages in different formats into a common format, and the
common format message is then processed by a business
service application. The common format is a canonical mes-
sage format that is referred to as an internal message format
herein. A parser examines the message and determines an
appropriate schema for the particular format of message
received. The schema is a data structure in a schema registry
that includes a grammar structure for the received format as
well as pointers to handlers for converting the different fields
of the message into the internal message format using the
grammar structure (the “grammar” can include field
sequence, field type, length, character encoding, optional and
required fields, etc.). The handlers are individually compiled.
Thus, rather than compiling the overall system, the handlers
are separately compiled, giving the speed of compiled soft-
ware while retaining a modular system that can be easily
upgraded without disturbing other elements of the engine. As
formats change, new formats or changes to old formats can be
dynamically added to the parse/build engine by loading new
schema and handlers.

In one embodiment, the parser can load a root schema
corresponding to the format of message detected, such as an
ISO 8583 financial message. The root schema would point to
a handler which determines what type of message has been
received (e.g., authorization message, reconciliation mes-
sage, etc.). The parser then loads the schema for the message
type identified, which in turn provides the particular grammar
and points to the handlers for that message type. Thus, the
entire grammar and handlers for all types of financial mes-
sages need not be loaded, only the subset actually needed,
thus limiting the memory needed and improving perfor-
mance. In addition, for each message type, schema and han-
dlers are loaded and called only for the fields actually present.
This is made possible by the modular structure and iterative
approach of the invention.

Inone embodiment, in addition to only loading the schema,
grammar and handlers that are actually needed, the parse/
build engine uses a fast indexing system for the internal
message format. This indexing system uses encoded object
Ds in the schema, which, for each field used in the received
format, index into (point to) the corresponding field of the
internal message format. Fields of the internal message for-
mat that aren’t used are not pointed to and thus don’t need to
be accessed. The indices can point to fields that are several
layers down in a hierarchical structure. By using the indices,
instead of sequentially processing all the fields, a speed
advantage is provided.

In one embodiment, a business service application pro-
cesses the message in the internal message format. As a result
of the processing, the business service application may
update or add fields (e.g., a time stamp, preprocessing tasks
such as calculating a risk score, etc.). The modified message
then undergoes the reverse of the parsing operation, a build
operation. The build operation similarly uses schema and
handlers to build the message into a desired external format
for return to the originator, or forwarding onto another desti-
nation for processing. The business service application is
separate from the parse build engine, thus changes to the parse
build engine need not affect the business services application.

US 9,215,196 B2

3

A further understanding of the nature and the advantages of
the inventions disclosed herein may be realized by reference
of'the remaining portions of the specification and the attached
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a system for processing transactions accord-
ing to one embodiment of the present invention.

FIG. 2 depicts a more detailed embodiment of a gateway
according to one embodiment of the present invention.

FIG. 3 depicts a simplified flowchart of a method for pro-
cessing a transaction according to one embodiment of the
present invention.

FIG. 4 depicts a simplified flowchart for generating con-
figuration information for a service offered by a transaction
processor according to one embodiment of the present inven-
tion.

FIG. 5 depicts a simplified flowchart of a method for sub-
scribing to a service according to one embodiment of the
present invention.

FIG. 6 depicts a decentralized system of a plurality of
gateways according to one embodiment of the present inven-
tion.

FIG. 7 depicts a system that shows the gateway as a front-
end gateway according to one embodiment of the present
invention.

FIG. 8 depicts a system where the gateway is an Internet
gateway according to one embodiment of the present inven-
tion.

FIG. 9 depicts a system where the gateway is used as a
wireless gateway according to one embodiment ofthe present
invention.

FIG. 10 depicts a system for processing ISO 8583 transac-
tions according to one embodiment of the present invention.

FIG. 11 depicts a system for parsing messages according to
one embodiment of the present invention.

FIG. 12 discloses an embodiment of a gateway according
to embodiments of the present invention.

FIG. 13 A depicts a structure for an IMF object according to
one embodiment of the present invention.

FIG. 13B depicts attributes for a message definition
according to one embodiment of the present invention.

FIGS. 14A, 14B, and 14C depict a possible message, a
hierarchical format with object ID codes, and an IMF object
for the message according to one embodiment of the present
invention.

FIG. 15 depicts a simplified flowchart of a method for
initializing the parse/build engine to process a message
stream according to one embodiment of the present invention.

FIG. 16 depicts a simplified flowchart of a method for
dynamically adding or updating a schema in the parse/build
engine according to one embodiment of the present invention.

FIG. 17 depicts a simplified flowchart of a method for
parsing an input message according to one embodiment of the
present invention.

FIG. 18 depicts a simplified flowchart of a method for
building an output message from an IMF object according to
one embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the present invention relate to the parse/
build of messages. A gateway that may incorporate a parse/
build engine according to an embodiment of the present
invention is described first. The parse/build engine is then
described in more detail.

10

15

20

25

30

35

40

45

50

55

60

65

The Gateway

Processing Overview

In one embodiment, intelligent switching of transactions is
provided. A transaction may be a credit card authorization,
debit card transaction or an electronic check transaction.
Other examples of transactions include awarding of points or
other rewards in an awards program, checking a password for
a Verified by Visa authentication, doing a money transfer,
deducting a payment from a prepaid card, such as a Visa Buxx
card or a salary card, handling a proximity payment from a
cell phone, pager, PDA, etc., determining coverage under
health, auto, or other insurance, etc. A client sends a transac-
tion to a gateway, which is then configured to intelligently
switch the transaction to a transaction processor of a service
provider. The client could be a POS, a merchant computer
networked to POS devices or ECRs (electronic cash regis-
ters), a kiosk (such as for coupons or money transfer), an
Internet web site server, etc.

The gateway is configured to make switching decisions at
the application level based on the application level content of
the transaction, a current state of a transport environment,
and/or dynamic rules. The application level content may be
information that is processed or used by a transaction proces-
sor in processing the transaction. In one embodiment, the
information may be OSI layer7 information. This layer
directly serves the transaction processor or end user. It
includes applications such as credit card authorization, debit
card transaction applications, etc. Example application layer
protocols are FTP (File Transfer Protocol), NFS (Network
File System), CIFS (Common Internet File System), HTTP
(Hyper Text Transfer Protocol), database query, SQL (Stan-
dard Query Language), and XML (Extensible Markup Lan-
guage). For example, in a credit card authorization, applica-
tion level content may include the credit card number,
personal account number (PAN), a customer account number,
a total amount for the transaction, etc. The transaction pro-
cessor may use this information in order to process the trans-
action.

The current state of the transport environment includes
real-time information associated with networks that can
transport the transaction and transaction processors that may
process the transaction. The real-time information may
include the health of a network or transaction processor, the
availability of a network or transaction processor, the appli-
cation processing speed of a transaction processor, etc.

The dynamic rules may be information that is used to
decide how to intelligently switch the transaction. The rules
are used to switch the transaction according to the application
level content and the current state of the transport environ-
ment. For example, the rules may specify that, depending on
certain application level content and the current state of the
transport environment, a certain service offered by a service
provider should be selected. Further, the rules may be used to
select a transaction processor for the service provider to pro-
cess the transaction. For example, certain countries may
require local processing for domestic transactions, thus
requiring routing to a regional processing center. These rules
may also factor in static information, such as network costs,
service costs, etc. in order to make a selection. The rules may
be dynamically changed without taking down a gateway.

The gateway may also perform services on the transaction
according to the rules. The services may include processing
the application level content. For example, transaction pro-
cessors may be configured to process a transaction in different
formats. A selected transaction processor may be configured
to process application level content in a different format from
the application level content currently in the transaction.

US 9,215,196 B2

5

Thus, the gateway may change the application level content to
the new format so the selected transaction processor can
process it. Accordingly, the gateway may change information
in a transaction at the application level. This is different from
reviewing information at the packet level. Conventionally, a
transaction may be broken up into packets. A router may look
at information in the packet and route the packet accordingly.
Looking at information at the packet level, however, does not
allow the router to perform services using the application
level content for the transaction. For example, by looking at
the application level content for the full transaction, the trans-
action may be intelligently routed with appropriate services
applied to the transaction. If individual packets carrying
information for the transaction are processed individually, the
application level content of the transaction as a whole is not
processed.

Accordingly, a gateway is provided that intelligently
switches a transaction at the application level based on the
application level content, current state of a transport environ-
ment, and/or dynamic rules. The gateway may also provide
services that are applied based on the switching decision.
System Overview

FIG. 1 depicts a system 100 for processing transactions
according to one embodiment of the present invention. As
shown, system 100 includes one or more clients 102, one or
more gateways 104, one or more networks 106, and one or
more transaction processors 108. The following description
will be described with respect to a single gateway 104, but it
will be understood that multiple gateways 104 may be pro-
vided to perform any functions described below. Also,
although the gateways are shown adjacent the clients, gate-
ways may also be deployed adjacent the transaction proces-
sors, between the transaction processors and the networks
106.

Clients 102 include any system configured to send a trans-
action. For example, clients 102 may include a system of
computing devices that perform transactions with users. In
one example, clients 102 may include a point of sale (POS)
device that receives user information, such as credit card
information, a pin number, name, etc., for a credit card autho-
rization, check card transaction, etc. A client could also be a
kiosk in a store for checking points or coupon information, or
a kiosk for money transfer, or a node for receiving wireless
user input from a cell phone or other device, or a web site
server, etc. The client could also be a merchant server through
which POS devices are networked.

The client (e.g., POS device) may then send a transaction
that requests a transaction service from a transaction proces-
sor 108. A transaction service may be any actions that may be
performed by a transaction processor 108. In one embodi-
ment, these transaction services add value for transactions
being performed by clients 102. Examples of transaction
services include facilitating credit card authorizations, debit
card transactions, electronic check transactions, etc. A trans-
action service may also include processing a transaction or
exchanging data.

Gateway 104 includes a system configured to receive trans-
actions from clients 102 and to route the transactions to trans-
action processors 108 through networks 106. In one embodi-
ment, gateway 104 is situated on the edge of a network 106.
For example, gateway 104 may be at the point of access for
client 102 or be on the premises of client 102. The edge of
network 106 may be a point where transactions may be con-
figured for routing through network 106. For example, gate-
way 104 may select a transaction processor 108 and send the
request to a router of network 106. The transaction may be

10

15

20

25

30

35

40

45

50

55

60

65

6

broken up into a number of packets. The router would then
route the packets for the transaction through network 106 to
transaction processor 106.

Networks 106 may be any network configured to transfer
data. For example, networks 106 may include any packet-
based networks, public switched telephone networks
(PSTNs), wireless networks, the Internet, private financial
networks, etc.

In one embodiment, networks 106 may be disparate and/or
unreliable networks. The networks are disparate in that they
may be controlled by different entities, may route data using
different protocols and formats, may route data using difter-
ent transport methods, etc. For example, networks 106 may be
controlled by different entities. In one example, a first Internet
Service Provider (ISP) may maintain a network 106-1 and a
second Internet Service Provider may maintain a network
106-2. Transactions may be routed through either network
106-1 or network 106-2 in one embodiment.

Also, networks 106 may be of different types. For example,
a network 106-1 may be an asynchronous transfer mode
(ATM) network that routes packets of data. Another network
106-2 may be a wireless network that transmits data wire-
lessly. Further, another network 106 may be a private network
for an entity, such as the VisaNet network. Although only two
networks 106 are shown, it will be understood that many more
networks 106 may be provided. Also, it will be understood
that transactions may be routed through multiple networks
106. For example, transactions may be routed through net-
work 106-1, then network 106-2, and then to a transaction
processor 108.

Networks 106 may also be unreliable. Because of the
nature of networks, they may fail at any time. Thus, failover
processing is needed to avoid disruptions in transaction pro-
cessing.

Service providers may register and publish services that
can be offered to clients 102. Clients 102 may register for the
services and have transactions switched to the service provid-
ers. Service providers may have any number of transaction
processors 108 that are configured to provide the services to
clients 102. In one embodiment, transaction processors 108
process financial transactions. For example, transaction pro-
cessors 108 may be associated with issuers, acquirers, mer-
chants, or any other service provider. In one example, trans-
action processors 108 facilitate the authorization of credit
card transactions.

A service may be provided by more than one transaction
processor 108. For example, a service provider may have
many data centers that can provide a service to a client 102.
Thus, a transaction for the service may be switched to any of
the transaction processors 108 that can provide the service.
The transaction processor 108 may be selected by gateway
104 based on application level content, context information
for a transport environment, and/or dynamic rules, all of
which may be dynamically changing.

The application level services may be dynamically
changed. Services available may be modified, moved to
another processor, be unavailable due to maintenance or fail-
ure, etc.

The context information for the transport environment may
also be dynamically changing. Gateway 104 thus determines
the context information for the transport environment when
determining how to switch a transaction. For example, a
current state of the health of a network 106, the availability of
anetwork 106, the availability of a transaction processor 108,
the speed that data is being transferred through a network 106,
the cost of transferring a transaction through a network 106,

US 9,215,196 B2

7

the cost of processing a transaction, how long an application
is taking to process a transaction at the application level, etc.
may be determined.

In addition to the dynamic information for the context
information for the transport environment, certain relatively
static information may be determined. For example, static
information may be the cost of a transaction, the format
needed in order for a transaction processor 108 to process a
transaction, etc. Gateway 106 may use the dynamic and static
information in determining how to route a transaction.

The dynamic rules may be information that is used to
decide how to intelligently switch the transaction. The rules
may be dynamically loaded. For example, a service provider
may register rules for a service, which be dynamically loaded
onto gateway 104. Also, a client may subscribe to the service
and provider rules for switching its transactions to the service
provider. These rules may also be dynamically loaded onto
gateway 104.

Accordingly, gateway 104 can dynamically select a trans-
action processor 108 for a service that can process a transac-
tion. Business services particular to a selected transaction
processor may also be performed on the transaction, such as
the transaction may be formatted such that the selected trans-
action processor 108 can process it. The transaction can then
be sent through a selected network 106 to the selected trans-
action processor 108. By dynamically selecting transaction
processors 108 and/or networks 106, gateway 104 insulates
clients 102 from any failures of transaction processors 108
and/or networks 106. Accordingly, this provides extremely
high service availability. Gateway 104 insulates a client 102
from any changes that need to be made that may cause down-
time for a transaction processor 108.

Overview of Gateway 104

FIG. 2 depicts a more detailed description of gateway 104
according to one embodiment of the present invention. As
shown, gateway 104 includes one or more request handlers
202, an inbound message stream parser 204, a security man-
ager 206, an adaptive route selector 208, a flow handler 210,
an outbound message stream builder 212, a message dis-
patcher 214, a coordinator 216, an administration module
218, a configuration loader 220, a rules database 222, a con-
text information database 224, and a dynamic information
monitor 226.

Request handlers 202 are configured to receive transac-
tions from clients 102. Clients 102 may send transactions in
different protocols and formats, such as hypertext transfer
protocol (HTTP), file transfer protocol (FTP), extensive
markup language (XML), ISO 8583 standards, etc. Request
handlers 202 provide an interface for transactions sent in
various protocols and formats, and provide the transactions to
inbound message stream parser 204. For example, an ISO
message handler is configured to receive ISO 8583 requests
from clients 102 and pass them to inbound message stream
parser 204. Also, an XML message handler, an HTTP request
handler, and an FTP request handler can handle XML, HTTP,
and FTP messages and/or requests. Accordingly, request han-
dlers 202 allow gateway 104 to receive messages in different
protocols and formats. Although the above formats and pro-
tocols are described, it will be understood that a person skilled
in the art will appreciate other formats and protocols that
request handlers 202 may process.

Inbound message stream parser 204 is configured to
receive a transaction from request handlers 202 and convert
the request into a canonical form. Inbound message stream
parser 204 can receive messages in different formats and
process those requests into a canonical format that can then be
processed by other components of gateway 104. Accordingly,

10

15

20

25

30

35

40

45

50

55

60

65

8

transaction requests in many different formats may be pro-
cessed by gateway 104. Inbound message stream parser 204
also provides an extensible architecture in that new formats
that may be processed by gateway 104 may be enabled. If a
new format is added, the translation from the new format to
the canonical format is added to inbound message stream
processor 104. Thus, because the canonical format is used,
changes to all components in gateway 104 are not needed
when new formats are added. Rather, inbound message
stream parser 204 is configured to parse a request into a
canonical format that can be processed by other components
of gateway 104. Further details of inbound message stream
parser 204 can be found in below.

Security manager 206 is configured to provide security
features for the transactions. For example, security features
such as pluggable authentication and authorization, role-
based access control (RBAC), encryption, file integrity, etc.
may be provided. The pluggable authentication and authori-
zation feature provides a standard interface for authentication
and authorization and hence allows newer methods of authen-
tication and access control to be added without impacting
existing methods. A person skilled in the art will appreciate
other security features that may be added to transactions.

An adaptive route selector 208 is configured to switch a
transaction to a transaction processor 108 through a network
106. Adaptive route selector 208 switches the transaction
based on application level content, the current state of a
transport environment, and/or dynamic rules.

Adaptive route selector 208 uses rules found in rules data-
base 222 and dynamic context information found in context
information database 224 to route a transaction. As men-
tioned above, context information may be stored in context
information database 224. In one embodiment, the context
information may be dynamic. A dynamic information moni-
tor 226 may monitor and determine context information. The
dynamic information is then stored in context information
database 224. Examples of context information include the
availability of networks 106, the health of transaction proces-
sors 108, a cost per transaction, time taken for an application
to process previous transaction at the application level, etc. In
one embodiment, dynamic information monitor 226 may
determine dynamic context information at run-time when a
transaction is received. In another embodiment, dynamic
information monitor 226 may determine dynamic context
information at certain intervals.

Each different service performed by transactions proces-
sors 108 may specify probes that can be performed by
dynamic information monitor 226. The probes are sent and
allow information to be collected based on the status of a
transaction processor 108 and/or network 106. For example,
dynamic information monitor 226 may ping a network in
order to determine if the network is available. If the transac-
tion processor 108 or network 106 cannot be reached, it may
be considered unavailable and status information is reflected
in context information database 224. Ifall transaction proces-
sors 108 for a service cannot be reached, then the service may
be considered unavailable. Gateway 104 may determine
another service provider that provides the service in this case.
Also, the time it takes an application on a transaction proces-
sor 108 to process a transaction may be measured. For
example, how long the application takes to authorize a credit
card authorization is measured. This measurement provides
application level context that can be used to switch a transac-
tion.

Rules database 222 includes rules for determining a service
for a transaction in addition to a network 106 and processor
108 to process the transaction. The rules may also express

US 9,215,196 B2

9

criteria for a client. For example, in order for a service to be
selected, certain context information and application level
content should be satisfied for the rules. Clients may provide
client-specific rules that may be used to select a service for the
transaction. In one example, when a transaction is received
for a client 102, adaptive route selector 208 may determine a
client’s specified selection rules and determine a service that
can handle the transaction. In order to switch the transaction
to a service provider that provides the service, application
level content is determined from the transaction and/or
dynamic context information is determined from context
information database 224. The application level content and/
or context information is applied to the rules to determine a
service provider that can process the transaction according to
the rules. For example, based on certain factors, such as costs,
clients 102 may specify that the cheapest service should be
selected first, but if not available, a second more expensive
service should be selected. Also, based on application level
content, such as account numbers, transactions may be
switched to a certain credit card service. For example, certain
account numbers may indicate a credit vs. debit card, or that
a particular points or awards system applies. Other account
numbers or fields could indicate a need for other services,
such as money transfer or password verification (e.g., Verified
by Visa). Also, the application level content may include the
location of the client and any regional or country-specific
regulations that dictate if the transaction needs to be pro-
cessed locally or sent to a processor 108 in a different country.

The services may also include a service specification that
specifies rules for the service. For example, the rules may
specify the message format required for transactions, the
network addresses of transaction processors 108 that provide
the service, preferences for switching transactions to transac-
tion processors 108, the range of account numbers that
qualify for the service, etc. These rules are provided by a
service provider upon registration, as discussed in more detail
below. The service provider may directly load the rules on
gateway 104, which would then publish the rules to other
interested gateways.

The rules may specify flows that can process the transac-
tion. The flows handle processing of the transaction for send-
ing to a transaction processor 108. The message is then sent to
a selected flow handler 210. After the transaction processor
108 and network 106 are selected, flow handler 210 may
perform business services on the transaction. For example,
different transaction processors 108 may process transactions
in different formats. Flow handler 210 may determine the
appropriate format for the selected transaction processor 108
and format the transaction in that format. Other business
services may include currency-conversions, encrypting sen-
sitive fields, client side stand-in processing for transaction
values below a certain threshold, etc.

Flow handler 210 may include a plurality of flows. Each
flow may handle a set of business services that process a class
of messages. Each flow includes a flow handler that coordi-
nates all the business services in the flow. A sequence of
services within a flow is specified by a flow specification,
which can be loaded at run time using configuration loader
220. The flow specification is the sequence of services that
determines how the incoming message is handled. Each ser-
vice is a software application code that performs a specific
function. New services and flow specifications can be loaded
dynamically to gateway 104.

After flow handler 210 processes the transaction in a flow,
the message is sent to an outbound message stream builder
212. Builder 212 is configured to build an outbound message
from a canonical format based on a message form expected by

10

15

20

25

30

35

40

45

50

55

60

65

10

the determined transaction processor 108. Builder 212 is thus
configured to generate a message in any message format
based on the canonical message format. Outbound message
stream builder 212 is described in more detail below.

Message dispatcher 212 is configured to send a transaction
to a transaction processor 108. Dispatcher 214 may ensure
that a transaction reaches the selected transaction processor
108. It may manage connections to various transaction pro-
cessors 108, attempt to reconnect to failed transaction pro-
cessors 108, and also provide the status of transaction pro-
cessors 108 and networks 106 to dynamic information
monitor 226. In one embodiment, the transaction may be
packetized, i.e., broken up into a series of packets and sent to
a router. The router may route the packets through network
106 to the transaction processor 108.

A coordinator 216 is provided to coordinate the processes
of gateway 104 and to ensure transactions are properly pro-
cessed. Also, coordinator 216 provides services for applica-
tion management, software distribution, system monitoring
and failover capabilities to gateway 104. Application man-
agement supports starting and stopping of applications and
services locally and remotely. It also allows new applications
and services to be added to gateway 104. Software distribu-
tion enables software updates to be installed on gateway 104,
and includes support for rolling back updates if necessary.
System monitoring service monitors key parameters of sys-
tem components such as memory, CPU, network interfaces,
and processes, and generates alerts if the configured param-
eters deviate from threshold values. It also restarts a process if
it detects a process failure. Coordinator 216 also monitors the
health of a peer gateway 104 using a heart-beat mechanism
(in case of a multi-gateway cluster deployment), and takes
over the processing load of the peer gateway 104 if the peer
gateway 104 fails.

Dynamic Loading of Rules

After initial registration of a service (described below), the
rules and business services performed by gateway 104 may be
dynamically changed. Administration module 218 and con-
figuration loader 220 are configured to dynamically load
changes to rules database 222 and flow handler 210.

Configuration loader 220 is configured to load a configu-
ration changes, routing rules, new flow specifications, etc.
into rules database 222 at run time. Accordingly, configura-
tion loader 220 allows the dynamic reconfiguration of routing
rules in rules database 222. The rule-base maintains multiple
versions of the rule-objects and has a synchronized reference
to the current version of the rule-base. Before configuration
loader 220 loads updates to the rule-base, it creates a shadow
copy of the active rule-base and versions it. Then, for every
object that is updated, it creates a new instance of the object
and updates the reference in the new version of the rule-base.
When all the updates are completed, it changes the reference
to point to the new version of the rule-base.

Administration module 218 is configured to allow for
administrative actions to be performed. Administration mod-
ule 218 may be used by a user agent to administer one or more
gateways 104. For example, administration module 218 may
be used to define new rules into rule database 222 or change
routing rules dynamically. Also, administration module 218
may also be used to load and unload new flow specifications
for flow handler 210, start and stop business services, and
load and unload configurations. Configuration loader 220 is
then configured to perform the changes.

The dynamic changes of embodiments of the invention are
made possible by the combination of modularization of ser-
vices and the run-time invocation of services for processing
messages through a flow (e.g., see description of flows above)

US 9,215,196 B2

11

.When a new transaction is received by adaptive route selector
208, it reads the current version of the rule-base and applies
the rules to select the appropriate flow. Since the flow handler
210 uses a specific version of a flow for the entire life of the
transaction, and each flow specification refers to a specific
versions of services, flows and rules. Thus, they can be
updated without interfering with an existing transaction at
that time because the updates are effected in a different ver-
sion than the version being currently used by existing trans-
actions.

Processing of a Transaction

FIG. 3 depicts a simplified flowchart 300 of a method for
processing a transaction according to one embodiment of the
present invention. In step 302, a transaction is received from
a client 102. The transaction may be any type of transaction
such as credit card authorization, check card transaction, etc.

In step 304, application level content is determined for the
transaction. As mentioned above, the application level con-
tent is used to process the transaction. For example, the appli-
cation level content may be credit card number, PIN, the name
of a member bank (enquirer or issuer), etc. The application
level content may be considered as a whole. For example, if
the transaction was packetized into a number of packets, the
application level content may be found in a payload of mul-
tiple packets. This information may be reassembled into the
application level content for the transaction.

In step 306, the current state of the transport environment is
determined. For example, the health of a transaction proces-
sor that can provide the services determined. Further, the
network health for networks 106 that can route the transaction
may also be determined. This information may be determined
in real-time to provide the current state of the transport envi-
ronment.

In step 308, rules are applied to the application level infor-
mation and/or current state of the transport environment to
determine a service. For example, certain clients 102 may be
associated with certain services. A processor host such as Visa
may desire that its transactions be switched to transaction
processors 108 that are owned by Visa. Further, other proces-
sor hosts may desire that their transactions be switched to a
secondary transaction processor, such as Vital.

In step 310, rules are applied to determine a transaction
processor and/or network 106 in which to switch the transac-
tion for the service. This decision may be determined based
on the application level content and/or the current state on the
transport environment as applied to the rules. For example, a
service to process the transaction is determined. Then, an
applicable transaction processor 108 is determined based on
network availability.

Also, a service may also be associated with various trans-
action processors 108 and networks 106. For example, credit
card authorizations may be configured to be sent to certain
transaction processors 108. Further, check card transactions
may be configured to be sent to a second set of transaction
processors 108. These rules are determined for the client
and/or transaction service.

In step 312, any business services may be performed at the
application level on the transaction as required. For example,
a transaction may be formatted into a format expected by the
selected transaction processor 108, any information at the
application level may be added to the transaction, or any other
business services may be performed.

In step 314, the transaction may be switched to the selected
transaction processor 108 through network 106.

Alternatively, in another embodiment, gateway 104 is con-
figured to process the transaction without switching the trans-
action to a service provider. A service provider may specify

10

25

30

35

40

45

12

rules that state gateway 104 can process transactions if certain
criteria are met. For example, if the transaction is lower than
acertain amount. In one example, credit card transactions less
than a threshold amount could be approved, not only without
having to go to the bank for approval, but also without having
to go over network 106 to a credit card company. This offers
many advantages as transactions can be processed at the edge
of'the network. This eliminates network bottlenecks and pro-
vides a decentralized processing system.

Service Creation and Subscription

As mentioned above, rules may be dynamically loaded into
rules database 222. FIG. 4 depicts a simplified flowchart 400
for loading rules in gateway 104 for a service offered by
transaction processor 108 according to one embodiment of
the present invention. In step 402, a service creation request is
received. For example, a service provider may try to register
a service by sending a service creation request that specifies a
service that is being offered by the service provider. Alter-
nately, a gateway 104 associated with a transaction processor
or other service provider may dynamically advertise new
services, and a gateway associated with a client can determine
whether to initiate a registration for those new services. A new
service might be a money transfer service, a new points pro-
gram, etc.

In step 404, rules for the service are received. For example,
the rules may specify addresses for transaction processors
108 that can process the service. The network addresses may
be IP addresses or any other identifiers that can be used to
route transactions to transaction processors 108. Addition-
ally, information for networks 106 that can be used to route
the request to the transaction processors 108 may also be
received. The rules may also specify criteria for using the
service. For example, criteria specifying the format messages
are expected to be received in, the costs of using the service
(both fixed and per-transaction costs), and any other criteria
for using the service may be received. The rules could specify
which types of cards, or types of accounts or account number
ranges qualify or are registered for the service.

In step 406, rules for the service are dynamically loaded
into rules database 222 by administration module 218 using
configuration loader 220. Further, any flow specifications that
are needed to process transactions for the service may be
loaded into flow handler 202.

Accordingly, when the service has been created and pub-
lished, clients 108 may subscribe to the services. FIG. 5
depicts a simplified flowchart 500 of a method for subscribing
to a service according to one embodiment of the present
invention. In step 502, a request is received from a client 108
to subscribe to a created service. The request may be received
through a web portal or by any other methods. Clients 102
may contact and access gateway 104 directly.

In step 504, a specification for rules or criteria for using a
service is received from client 108. This specification may
indicate criteria that are needed to select the service for a
transaction received from client 108. The criteria may be
client-specific or may be uniform across many clients 108
(e.g., for all POS devices for an entity). Also, the specification
may be in the form of a priority for each service subscribed to
by the client 108. For example, a client may specify that, for
a transaction, a first service is selected, but, if that service is
not working, then a second service should be selected, etc.
The criteria may also be more complicated and include more
complex rules that factor in the network costs, service costs,
etc.

In step 506, rules for routing the requests for the service are
generated. These rules may specify criteria that need to be

US 9,215,196 B2

13

satisfied based on application level content and/or the current
state of the network transport environment in order for the
service to be selected.

In step 508, these rules may be dynamically loaded into
rules database 222. Accordingly, a service may be immedi-
ately available to a client 108 that subscribes to the service.

In step 510, flow definitions for the service are generated.
Flow definitions may be configured to support the service. In
one embodiment, flow definitions for the service may have
already existed and may not need to be generated. However,
if the specialized business services need to be performed for
client 108, new flow definitions may be generated.

In step 512, the flow definitions generated in step 510 may
be dynamically loaded by configuration loader 220.

In one embodiment, the rules may be received from a client
102 before a transaction is sent. For example, client 102 may
subscribe to a service and provide rules for using the service.
In another embodiment, the rules may be sent immediately
before or after a transaction is sent. For example, client 102
may specify rules to use in a message sent before or after the
transaction. The rules are then dynamically loaded onto gate-
way 104. This allows a client 102 to dynamically configure
gateway 104 at run-time.

Decentralization of Rules for Services

A plurality of gateways 104 may be deployed in a system.
Each gateway 104 can provide its own services to clients 102
itis coupled to. Gateway 104 may be positioned at the edge of
network 106, at a point of client access, and possibly on the
physical premise of a client 102. In one embodiment, gate-
ways 104 only store information for services offered by the
gateway 104. Different gateways 104 may have information
for a different set of services. Accordingly, the information
for providing various services registered by service providers
or subscribed to by clients 102 may be distributed across
gateways 104 or is decentralized. Because of the decentrali-
zation of information, gateways 104 are configured to contact
other gateways 104 to either query for information for a
service or to provide information for a service.

FIG. 6 depicts a system 550 showing the decentralized
system of gateways 104 according to one embodiment of the
present invention. As shown a plurality of clients 102 and
gateways 104 are shown. Gateways 104 are located on the
edge of one or more networks 106.

Each gateway 104 may be coupled to one or more clients
102. For discussion purposes, a single client 102 is shown
coupled to a gateway 104 but it will be understood that many
clients 102 may be coupled to a gateway 104. Also, it will be
understood that gateways 104 may be coupled to transaction
processors 108 instead of clients 102.

Gateway 104 is configured to process transactions for the
clients 102 it is coupled to at the edge of network 106. For
example, gateway 104-1 is configured to process transactions
for client 102-1 and gateway 104-2 is configured to process
transactions for client 104-2. Gateway 104-1 stores informa-
tion for services offered to client 102-1 and also information
regarding preferences for client 102-1. The same is true for
other gateways 104 and clients 102.

Gateways 104 maintain contact information for other gate-
ways 104 to facilitate distribution of information for services.
For example, when a first gateway 104 needs information for
a service not currently offered by the first gateway 104, it can
contact a second gateway 104 that offers the service to have
information, such as the rules for the service, sent to it. In
another embodiment, the first gateway 104 may send a trans-
action for the service to the second gateway 104 where the
second gateway 104 can process the transaction. In this case,
the second gateway 104 can switch the transaction to a trans-

10

15

20

25

30

35

40

45

50

55

60

65

14

action processor 108, receive a response, and then send the
response back to the first gateway 104.

The contact information may also be used to distribute
information for services to other gateways 104. For example,
aservice provider may upload a new service on a first gateway
104. The rules for the service may then be distributed to other
gateways 104. For example, gateways that are coupled to
clients 102 at the edge are sent the rules if the clients 102 are
interested in the service. Clients 102 can also upload their
own rules.

Each client may load only the rules for services it desires,
reducing the memory and updating needed, and improving
the speed of the gateway processing. For example, a hotel
client may want a points or rewards service, but not a money
transfer service. By only loading desired services, the hotel
could get more information on its gateway without impacting
performance. For example, the account numbers, or ranges of
account numbers, that are in a points program can be stored on
the gateway, so the processing to determine if a user qualifies
for points can be done locally. A web site client, on the other
hand, might be more interested in the Verified by Visa service.
Similarly, information and rules particular to Verified by Visa
could be stored locally, such as whether a card member sub-
scribed and has a password, allowing prompting for the pass-
word without going out over the network to determine if the
user is a subscriber. Certain merchants that do a lot of business
with certain corporations may be more interested in the Visa
business card, and want local listings of purchase card
account numbers that are approved for purchases at that par-
ticular merchant.

In this way, clients 102 and service providers may interact
directly with gateways 104 to load or request services. This
may be advantageous for clients 102 because gateways may
be tailored to that client’s needs. Further, because a gateway
104 may be maintained at a client’s site, the gateway 104 may
be accessed easily and without delay.

Accordingly, a decentralized set of services is provided by
system 550. Instead of having a central processor, the pro-
cessing is distributed to the edge of the network. This elimi-
nates bottlenecks and provides failover protection. For
example, conventionally, if a central processor is used and it
goes down, then transaction processing for the whole system
may be affected. However, if a gateway 104 goes down,
processing for the whole system 550 is not affected and
transactions may be rerouted to other gateways 104.
Deployment Scenarios

Gateway 104 may be deployed in many different scenarios.
For example, gateway 104 may be deployed as a front-end
gateway on a private network, as an Internet gateway, and/or
as a wireless gateway. FIG. 7 depicts a system 600 that shows
gateway 104 as a front-end gateway according to one embodi-
ment of the present invention. System 600 connects one or
more clients 102 to one or more transaction processors 108
across disparate networks 106. Transaction processors 108
may be any system that can process a transaction from client
102. For example, Visa, MasterCard, etc. may own transac-
tion processors for credit card and debit card transactions, and
a member bank (acquirer/issuer) may be a client 102.

A client data center 602 may receive transactions from
client 102. The transactions may be credit card authorizations
or debit card transactions. The data center may be a central
computer connected via a client’s private network to multiple
POS devices, for example. Gateway 104 processes the trans-
actions and intelligently switches the transactions to a trans-
action processor data center 108. For example, if the transac-
tion is a Visa transaction, transaction processor data centers A
and B may be associated with Visa. If the transaction is a

US 9,215,196 B2

15

MasterCard transaction, processor data centers C may be
selected because they are associated with MasterCard.

Gateway 104 determines an appropriate transaction pro-
cessor 108 and network 106 in which to route the transaction.
The transaction is then sent to a router 604 which can then
route the transaction. In one embodiment, router 604 may
route packets to the selected transaction processor 108
through a network 106.

FIG. 8 depicts a system 700 where gateway 104 is an
Internet gateway according to one embodiment of the present
invention. An Internet client 702 includes a client 102. Client
102 may send transactions to gateway 104 through the Inter-
net 704. Gateway 104 may be configured for particular ser-
vices needed for on-line shopping, such as normal credit card
authorization, password authentication (Verified by Visa),
rewards or points processing, etc.

Gateway 104 provides connectivity to different transaction
processors 108 for client 102. Gateway 104 may accept
HTTP(s) and other XML -based requests. Based on applica-
tion level content and the current state of a transport environ-
ment, a service and transaction processor 108 may be
selected. Because the transaction may have been sent in
HTTP or any other XML -based request, gateway 104 may
translate the message to a format expected by transaction
processor 108 before switching the transaction. For example,
transaction processor 108 may require that a message be
processed in an ISO 8583 format. Typically, when a POS
device processes a transaction, the transaction may be sent in
the ISO 8583 format. However, when a transaction is pro-
cessed by an Internet gateway, an Internet client 702 may not
be configured to send an ISO 8583 message. Thus, gateway
104 is configured to format the message into the ISO 8583
format required by transaction processor 108.

In one example, gateway 104 may process Internet trans-
actions from an Internet client 702. Internet client 702 sends
an HTTP(s) request to gateway 104. Gateway 104 translates
the HTTP(s) request into a canonical internal message for-
mat. Any business services may then be performed on the
transaction. In one example, application level data may be
changed in order to conform to a format required by transac-
tion processor 108. For example, an XML transaction may be
converted into an ISO 8583 format. Gateway 104 then intel-
ligently switches the transaction to a transaction processor
108.

Transaction processor 108 processes the transaction and
sends a response back to gateway 104. This response may be
in a transaction processor-specific format. Gateway 104 then
builds an HTTP(s) response and sends it to Internet client 702.
Accordingly, a transaction through the Internet can be pro-
cessed using gateway 104.

FIG. 9 depicts a system 800 where gateway 104 is used as
a wireless gateway according to one embodiment of the
present invention. The gateway may receive wireless mes-
sages from a user’s mobile phone, PDA, pager, etc. Gateway
104 may be configured to support different wireless formats,
such as wireless application protocol (WAP), mobile infor-
mation device protocol (MIDP), JQME, etc. A MIDlet sends
XML format requests over networks such as the global sys-
tem for mobile communication (GSM) or general packet
radio services (GPRS). Gateway 104 may convert inbound
request payloads into a canonical internal message format.
The internal message format (IMF) may then be processed by
business services. The outbound message stream builder 212
converts the IMF to a response payload for sending to a
transaction processor 108. Accordingly, wireless transactions
may be processed by gateway 104.

5

10

15

20

25

30

35

40

45

50

55

60

65

16

A wireless transaction will now be described. In one
embodiment, a wireless client 808 initiates a wireless pay-
ment transaction by sending an XML request over HTTP(s)/
GSM/GPRS. Gateway 104 receives the XML request and
converts it into a canonical internal message format before
processing the request. Application level content in the trans-
action is used in addition to a current state of the transport
environment to switch a transaction to a transaction processor
108. Depending on the transaction processor 108 selected,
flow handler 210 may perform business services on the trans-
action. The transaction is then sent to a transaction processor
108.

Transaction processor 108 determines a client bank (or
issuer) 802 and routes a message to the issuer 802. Issuer 802
processes the request and sends a response back to transaction
processor 108. Transaction processor 108 then sends a
response (in a transaction processor-specific format) back to
acquirer 804. Gateway 104 receives the response, translates it
into an XML format, and sends it to wireless client 808.
Accordingly, gateway 104 is configured to route wireless
transaction payments.

FIG. 10 depicts a system 900 for processing ISO 8583
transactions according to one embodiment of the present
invention. As shown, an issuer bank 902 and an acquirer bank
904 participate in the transaction. A client computer 102 at an
acquirer bank 904 sends an ISO 8583 request to gateway 104.
Gateway 104 uses application level content and the current
state of the transport environment in order to select a trans-
action processor 108 to handle the request. The message is
then sent to the selected transaction processor 108 after any
business services are performed on the request.

Transaction processor 108 processes the transaction and
switches it to the appropriate issuer 902 for authorization. The
issuer sends an ISO 8583 back to transaction processor 108.
Transaction processor 108 then sends a response to gateway
104, which then is sent to client 102 of acquirer bank 102.

In one example, a transaction processor 108 may not be
available. In this case, for example, Processor A, data center
01 may not be available. This may be the preferred processor
for a client 102 for the service. Gateway 104 then sends the
transaction to a second processor, Processor A, data center 02.
Gateway 104 may keep checking for the availability of the
primary data center and, once it becomes available, may start
routing messages to the primary data center. The re-routing of
transactions is done in a manner that is transparent to client
102. Accordingly, down time for any transaction processors
108 is avoided using the intelligent switching of gateway 104.

In another embodiment, the data centers for Processor A
may be down and other data centers for other processors, such
as Processors B and C, may need to be used. Processors B and
C may process transactions in a different format than that of
Processor A. In this case, gateway 104 may convert the format
of' the transaction to a format that corresponds to a format for
processor B or processor C. The formatted transaction is then
sent to processor B or processor C. Accordingly, different
processors can be used in a way that is transparent to clients
102. Even if processors use different formats, gateway 104 is
configured to still route the transaction in that format.
Parse/Build of Messages
Overview of Parse Build Engine

FIG. 11 depicts a system 1000 for parsing messages
according to one embodiment of the present invention. Sys-
tem 1000 is configured to parse multi-format message
streams, such as ISO 8583 messages into a canonical message
format referred to as an internal message format (IMF) and
build multi-format message streams, such as ISO 8583 mes-
sage streams, from the IMF. Although financial message

US 9,215,196 B2

17

streams are described, it will be understood that any multi-
format message streams may be parsed and built using system
1000.

Parse/build engine 1004 corresponds to inbound message
stream parser 204 and outbound message stream builder 212
of FIG. 2 Although all the components as shown in FIG. 2 are
not shown in FIG. 11, it will be understood that those com-
ponents may also be included in system 1000. Additionally,
parse/build engine 1004 may be included in gateway 104, but
may also be included in other components. For example,
parse/build engine 1004 may be compatible with any soft-
ware applications that processes data in a data format differ-
ent from other heterogeneous systems.

Parse/build engine 1004 is configured to receive an input
message stream 1010 from a system 1006 and parse the
message into an internal message format. The internal mes-
sage format (IMF) may then be processed by other compo-
nents, such as a business services application shown in gate-
way 104. After components in gateway 104 process the
message in the IMF, parse/build engine 1004 builds an output
message stream 1012 from the processed IMF. The output
message stream 1012 may then be sent to a system 1008, or
returned to originating system 1006.

Systems 1006 and 1008 may be any system that is config-
ured to send messages 1010 and/or receive messages 1012
from parse/build engine 1004 (or gateway 104). In one
embodiment, systems 1006 and 1008 may be point of sale
devices, smart card devices, transaction processors 108, any
system configured to process transactions, such as an
acquirer, issuer, a service provider, a transaction authentica-
tor, etc. Systems 1006 and 1008 may send/receive messages
in many different formats such as ISO 8583 messages, exten-
sible mark-up language (XML), HTML, etc. The input mes-
sage stream may also be in any of multiple encoding schemes,
such as ASCII, EBCDIC, BCD, etc., and have different data
types, such as numeric, string, byte-array etc.

The parse/build engine of FIG. 11 uses a schema table
1028. Each schema is a data structure that provides metadata,
including a grammar structure for the received format as well
as pointers to handlers in handler table 1030. The handlers
correspond to particular fields in the message and convert the
different fields of the message into the internal message for-
mat using the grammar structure. The handlers are code that
is individually compiled. Thus, rather than compiling the
overall system, the handlers are separately compiled, giving
the speed of compiled software while retaining a modular
system that can be easily upgraded without disturbing other
elements of the engine.

Parse/build engine 1004 loads the identified schema and
invokes the functionality of handlers associated with the
schema. The handlers then parse the fields of a message into
an IMF object

The schemas and any associated handlers not already
loaded, may be loaded from schema definition file 1026 into
schema table 1028 and handler table 1030 using the schema
loader 1024. Schema table 1026 includes various schemas,
labeled schema name 1, name 2, . . . , name N. For each
message format that may be parsed and built by parse/build
engine 1004, a corresponding schema may be provided. Each
schema name is associated with a schema object that defines
the “grammar,” the composition of a message stream in the
external format. The composition may include a field
sequence, field type, length, character encoding, and other
fields that are optional or required. The new schema and
compiled handlers may be loaded and used by parse/build
engine 1004 without recompiling parse/build engine 1004.

10

15

20

25

30

35

40

45

50

55

60

65

18
Parse/Build Flow

An example flow will now be described. As shown in FIG.
11, when a message is received, a business services program
calls the parse/build engine 1004. The message 1010 (a mes-
sage stream in wire format) is sent to the parse/build engine,
where it is first received by parser component 1016. The
business services application also provides the schema name
1011 to parser component 1016. The parser component cre-
ates an internal message format (IMF) object in which to store
the values from the message fields once they are translated
into the IMF. In one embodiment, parser component 1016
recognizes the origin of message 1010 and determines which
schema is needed for messages 1010 sent from the origin. In
another embodiment, information in message 1010 may be
parsed to determine the data format and thus a corresponding
schema that should be used. Further, message 1010 may
indicate which schema corresponds to the data format.

In one example, the parser component 1016 first looksup a
root schema corresponding to the format of message detected,
such as an ISO 8583 financial message. Such an ISO message
may have a bitmap at the beginning which identifies which
fields are present. The root schema would point to a handler,
which is called and parses a type field to determine what type
of message has been received (e.g., authorization message,
reconciliation message, etc.). The parser component then
looks up the schema for the message type identified, which in
turn provides the particular grammar and points to handlers
for that message type. Schema and handlers are looked up and
called only for the fields actually present in the message. As
new fields are identified or pointed to, new schema can be
looked up and the corresponding handlers can be called. A
particular field could be a composite field with one or more
conditions, and the translating or parsing of the conditions
can point to additional schema and associated handlers
needed, depending on the outcome of the condition.

The IMF object 1018 (described in more detail below) is
populated by the called handlers. The only fields populated
are the fields corresponding to the fields included in the
incoming message.

IMF object 1018 may then be processed by the business
software application of gateway 104. After being processed,
IMF object 1018 is sent to build component 1020 along with
a schema name for the outbound message stream. Because
processing of the processed IMF object 1018 may be per-
formed in a different data format, builder component 1020 is
configured to build an output message stream 1012 from the
processed IMF object 1018. The process described above is
repeated in reverse, with builder component 1020 looking up
aroot schema, calling the handler pointed to in order to build
the type information in a process that can be reiterated many
times. The called handlers build values found in IMF object
1018 into the fields that should be included in output message
stream 1012. Output message stream 1012 may then be sent
to system 1008, which can process the output message stream
1012.

FIG. 12 illustrates a business services application 1102 that
uses the IMF object 1018 to perform any services provided by
gateway 104. Business services application 1102 operates on
IMF object 1018. The operations could include application
layer routing, such as determining an issuer bank or process-
ing center to send the message to. Additionally, services may
be performed on a message, such as application level format-
ting of the message stream, logging, time-stamping, creating
new fields needed for a reply or further processing, etc. The
business services application could do pre-processing for an
issuer or financial network, or it could perform local process-
ing that has been offloaded. For example, authorization mes-

US 9,215,196 B2

19

sages for purchases less than $50 may be approved, and a
reply message sent without needing to forward the message to
a financial institution for approval. Business services appli-
cation 1102 is configured to process data in internal message
format and not the external formats. Accordingly, business
services application 1102 is insulated from any external for-
mats that are used by other systems by parsing the message
into the IMF.

IMF Structure

FIG. 13 A depicts a structure for the IMF 1018 according to
one embodiment of the present invention. As shown, N fields
are provided in IMF 1018. The fields may be an array of fields
where each field can also include any number of child fields,
which in turn can include grandchild fields, etc. in a hierar-
chical structure. For example, Field 1 includes child Fields
1.1,1.2, ... 1.N. Fields 1.2, . . . 1.N may also include any
number of child fields (not shown). When a message if
received, only the fields actually used are populated with data.

FIG. 14B shows the hierarchical format with object ID
codes, indices to the field definitions for the fields shown in
FIG. 13A. The OID allows the indexing for various fields in
an IMF object 1018. Field definitions are accessed for fields
in IMF object 1018 using the OID. In one embodiment, the
OID is an eight-byte number that is represented by the dotted
decimal representation shown. The OID for the first field is
encoded as 1.0.0. Any subfields are encoded as 1.1.0, 1.2.0,
and so on. The second field is encoded as 2.0.0, with any
subfields encoded as 2.1.0, 2.2.0, and so on.

Schema Structure

FIG. 13B shows an example schema. The address of the
schema is the first line, the message definition (MessageDef).
The schema includes grammar and pointers to handlers for
each of the fields in the message. In the example shown, the
first field of the message is identified by a Field Definition
Object (FieldDef) 1202 with index 1.0.0. This is also referred
to as an OID attribute 1202. Following the index for this field
is the identification of the handler 1204 to be called (HDR).
The rest of the elements on that line are the definitions of the
grammar for that particular field. These field definitions
describe the properties of the field, such as field sequence,
field type, length, character encoding, the names ofthe hander
needed, etc. The field definitions may be used to parse/build
fields encoded in different encodings like ASCII, EBCDIC,
BCD etc., and different data types like numeric, string, byte-
array etc. Thus, multi-format message streams may be pro-
cessed using the message definition. In one embodiment, the
schema is metadata in the form of an XML schema.

The field definitions may include a number of attributes. It
will be recognized that the attributes depicted in FIG. 13B are
not exhaustive and a person skilled in the art may appreciate
that other attributes may be used.

A handler attribute 1204 is the name of the field. A
required/optional attribute 1206 indicates whether the field is
required or optional in a message. A first data format attribute
1208 is the data format for the value of the field as found in the
external format (also referred to as the wire-format). A second
data format attribute 1210 is the internal format in which the
field is stored in the IMF and processed by the business
services.

A custom/not custom attribute 1212 indicates whether the
field uses a custom handler or a generic handler to the parsing
and building of the field.

A seventh attribute 1214 indicates the handler name that is
needed to process the value in the field of the message. The
handler takes the value in the identified field in the received
message and either parses it into the IMF (for a parser

10

15

20

25

30

35

40

45

50

55

60

65

20

schema) or builds the value from the IMF to an external
format (for a builder schema).

An eighth attribute 1216 indicates the number of sub-fields
within the field.

Example Message Fields used in IMF (Internal Message For-
mat)

FIG. 14A depicts an example of the fields used for a par-
ticular message object 1010 which includes a number of
object IDs (Ms) for different fields, OIDs 1.0.0,1.1.0, 1.1.1,
2.0.0,2.2.0,4.0.0,and 4.1.0. These are the fields pointed to by
the schema of FIG. 13B. Thus, for this example message, only
the fields identified in FIG. 14C would be populated in the
message object, which is shown in FIG. 13A. FIG. 14B shows
a portion of the total hierarchical object IDs for the complete
set of fields in the internal message format. As can be seen,
message 1010 only includes the portion of these fields that it
needs. For example, object IDs 1.2.0, 3.0.0 and 4.2.0 are not
used. Note that these fields may have any number of child
fields.

The object IDs provide a fast indexing system into the
hierarchical internal message format of the message object
shown in FIG. 13A. This indexing system uses the encoded
object IDs (1.0.0, etc.), which, for each field used in the
received format, index into (point to) the corresponding field
of'the internal message format. The indices can point directly
to fields that are several layers down in a hierarchical struc-
ture.

When components of gateway 104 process IMF object
1018, processing of the unnecessary fields is not performed.
Thus, processing speed is increased.

Required fields may also be added to IMF object 1018.
Some fields may be required by business services module
1102 or transaction processors 108. If it is determined that a
field that is necessary to be used is not included in a received
message 1010, the field may be populated by the business
services module for inclusion in the message to be built for
retransmission. Thus, the “required” fields in the schema of
FIG. 13B may be added to an IMF object 1018 if not included
in message 1010.

Initializing Parse/Build Engine

FIG. 15 depicts a simplified flowchart 1400 of a method for
initializing parse/build engine 1004 upon the start-up of the
business services application. In step 1402, an initialization
request is received from the application. The request includes
the location of one or more schema definition files 1026.

In step 1404, the schemas found in schema definition files
1026 are validated. The schemas are validated by a number of
procedures, such as verifying that the correct type of data is
referred to, that the handlers identified by the schema actually
exist, etc.

In step 1406, the schemas in schema definition files 1026
are loaded into registry 1022 from disk or other storage
repository into DRAM memory using schema loader 1024.

In step 1408, any handlers specified in the schema are
loaded into registry 1022. For example, handlers specified by
the field definitions in the message definition object are
loaded into handler table 1030. In one embodiment, handlers
are stored as objects keyed by the handler name.

In step 1410, the handlers are bound to the respective
message definition objects. For example, all handlers that are
specified by field definitions in a message definition object
are bound to that message definition object.

Parse/build engine 1004 has now been initialized for the
schema. In one embodiment, compiling of parse/build engine
1004 is not necessary. This is because of the use of compiled
handlers that are used to parse/build field values.

US 9,215,196 B2

21

During run-time, schemas may be dynamically updated
and added to parse/build engine 1004. The schemas may be
updated by changing message definition objects or may be
added by adding new message definition objects. If new han-
dlers are needed, they may also be dynamically added to
parse/build engine 1004 as compiled objects.

The schemas may be added without recompiling parse/
build engine 1004 and without bringing it down. Thus, parse/
build engine 1004 may continue to parse/build messages even
as schemas are updated.

Adding or Updating Schema

FIG. 16 depicts a simplified flowchart 1500 of a method for
dynamically adding or updating a schema in parse/build
engine 1004 according to one embodiment of the present
invention. In step 1502, a request to dynamically add or
update a schema is received from an application. The request
includes the location of one or more schema definition files
1026 that include the new or updated schema.

In step 1504, the schemas found in schema definition files
1026 are validated.

In step 1506, the schemas in schema definition files 1026
are loaded into registry 1022. If an updated schema is pro-
vided with a set of new field definitions or changed field
definitions, only the new or changed field definitions may be
loaded into registry 1022. While adding or updating the
schema, the appropriate data structures are write-locked to
ensure that in-flight messages being processed are not cor-
rupted as a result of schema change. The in-flight messages
continue to use the previous version of the schema while the
Schema Loader 1024 loads the updated version of the
schema.

In step 1508, any handlers specified in the message defini-
tion object are loaded into registry 1022. Parse/build engine
1004 may check to determine if any handlers are already
present in registry 1022 and may not reload those handlers
into registry 1022. However, if any handlers were changed,
the changed handlers are loaded.

In step 1510, the handlers are bound to the respective
message definition objects. In one embodiment, only the new
or changed handlers are bound to a message definition object
that has been updated. Parse/build engine 1004 has now been
dynamically updated.

Flowchart of Parse process

FIG. 17 depicts a simplified flowchart 1600 of a method for
parsing an input message stream 1010 according to one
embodiment of the present invention. In step 1602, a schema
for the message is determined. The schema corresponds to a
data format that the input message stream 1010 is composed
in.

In step 1604, any handlers for the message definition object
are determined from the pointers in the schema.

In step 1606, the handlers for each field are attached to the
field.

In step 1608, the handler translates the fields of the mes-
sage. A handler for each field is invoked. The handlers use the
field definitions in the schema to translate values of the fields
into the IMF. The OID for the field points to both the field
definitions in the schema for that field and also points to the
corresponding field in the IMF object 1018.

In one embodiment, parser component 1016 maintains an
offset for the fields read in message 1010. For example, the
number of bytes read is stored as an offset. The parser com-
ponent decrements this offset as each handler is called. When
the handlers reach the end of message 1010 (e.g., when the
offset equals a certain length), or the last field definition in the
message definition object, the parser component knows the
translation is complete.

10

20

25

30

35

40

45

50

55

60

65

22

In step 1610, the translated fields are stored in the corre-
sponding hierarchy of IMF object 1018. An OID for the field
may be used to store the translated values into corresponding
positions in a hierarchy in IMF object 1018.

If the translation above fails at any point, an error may be
returned to gateway 104. The parsing may continue and an
IMF object 1018 may be returned. Error flags, however, may
be noted in IMF object 1018.

Flowchart of Build Process

The build process will now be described with respect to
FIG. 18. FIG. 18 depicts a simplified flowchart 1700 of a
method for building an output message stream 1012 from an
IMF object 1018 according to one embodiment of the present
invention. In step 1702, a schema name and IMF object 1018
are determined. In one embodiment, IMF object 1018 is first
determined. The schema name may be determined based on
information in IMF object 1018. For example, the schema
name may be stored in information in IMF object 1018. Also,
the schema name may be determined by the channel or des-
tination system in which information in the IMF object 1018
will be sent to.

In step 1704, a message definition object is used to address
the schema in registry 1022. In step 1706, any handlers
needed for the schema are also determined.

In step 1708, for each field found in IMF object 1018, the
value from a corresponding field in the hierarchy in the IMF
object 1018 is loaded. OIDs for the field are used to access the
field definitions.

In step 1710, the value is translated from the field in IMF
object 1018 according to the attributes of the field definition
for the field. Accordingly, a value found in the IMF format is
translated into a format compatible with another system.

In step 1712, the built values are composed in correspond-
ing fields of a generated output message stream 1012.

If a value for a field in an IMF object 1018 is not found for
a field required for the external forma, the value for that field
in the external message may be set to null or the message
generated may simply not have this field in the message.
Further, if it is determined that IMF object 1018 should have
had this field, then an error may be returned indicating that a
field was not found in IMF object 1018.

Alternatives

The present invention can be implemented in the form of
control logic in software or hardware or a combination of
both. The control logic may be stored in an information stor-
age medium as a plurality of instructions adapted to direct an
information-processing device to perform a set of steps dis-
closed in embodiment of the present invention. Based on the
disclosure and teachings provided herein, a person of ordi-
nary skill in the art will appreciate other ways and/or methods
to implement the present invention.

The above description is illustrative but not restrictive.
Many variations of the invention will become apparent to
those skilled in the art upon review of the disclosure. The
scope of the invention should, therefore, be determined not
with reference to the above description, but instead should be
determined with reference to the pending claims along with
their full scope or equivalents.

What is claimed is:

1. A computer-implemented method comprising:

receiving an output message from a server computer,

wherein the output message comprises a plurality of

fields, and wherein the server computer:

determined a schema for the output message;

retrieved a plurality of handlers based on the schema,
each handler being code for building at least one field
of the plurality of fields of the output message from a

US 9,215,196 B2

23

common internal message format object, each of the
plurality of handlers being separately compiled; and

translated the common internal message format object
into the output message using the plurality of han-
dlers.

2. The method of claim 1, wherein the output message
comprises a hierarchical structure of possible fields, wherein
the translating by the server computer is only done for fields
in the output message corresponding to fields that are popu-
lated in the common internal message format object.

3. The method of claim 1, wherein each message field
included in the schema is identified by an object ID, the object
ID being an index pointing to a particular location in the
common internal message format object.

4. The method of claim 1, wherein the server computer
dynamically loaded one of the plurality of handlers without
recompiling the other handlers in the plurality of handlers.

5. The method of claim 1, wherein the schema is deter-
mined by the server computer based on a field in the common
internal message format object.

6. A computing device comprising:

a processor; and

a computer readable medium coupled to the processor,

wherein the computer readable medium includes code

executable by the processor for implementing a method

comprising:

receiving an output message from a server computer,
wherein the output message comprises a plurality of
fields, and wherein the server computer:

10

20

25

24

determined a schema for the output message;

retrieved a plurality of handlers based on the schema,
each handler being code for building at least one
field of the plurality of fields of the output message
from a common internal message format object,
each of the plurality of handlers being separately
compiled; and

translated the common internal message format
object into the output message using the plurality of
handlers.

7. The computing device of claim 6, wherein the output
message comprises a hierarchical structure of possible fields,
wherein the translating by the server computer is only done
for fields in the output message corresponding to fields that
are populated in the common internal message format object.

8. The computing device of claim 6, wherein each message
field included in the schema is identified by an object ID, the
object ID being an index pointing to a particular location in
the common internal message format object.

9. The computing device of claim 6, wherein the server
computer dynamically loaded one of the plurality of handlers
without recompiling the other handlers in the plurality of
handlers.

10. The computing device of claim 6, wherein the schema
is determined by the server computer based on a field in the
common internal message format object.

#* #* #* #* #*

